metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.41D6, C6.52+ 1+4, Dic3:D4:2C2, C12:7D4:4C2, D6:C4:2C22, C24:4S3:3C2, C23.9D6:2C2, (C2xD12):4C22, (C2xC6).38C24, C4:Dic3:6C22, C22:C4.87D6, (C22xC4).61D6, C2.9(D4:6D6), C12.48D4:4C2, Dic3:C4:2C22, (C2xDic6):3C22, C23.8D6:1C2, (C2xC12).131C23, C23.11D6:2C2, C3:1(C22.32C24), (C4xDic3):48C22, C23.92(C22xS3), C22.77(S3xC23), (C23xC6).64C22, C22.23(C4oD12), (C22xS3).10C23, (C22xC6).128C23, (C2xDic3).11C23, C6.D4.2C22, (C22xC12).355C22, (C4xC3:D4):34C2, (S3xC2xC4):41C22, C6.16(C2xC4oD4), (C6xC22:C4):20C2, (C2xC22:C4):17S3, C2.18(C2xC4oD12), (C2xC3:D4).7C22, (C2xC6).104(C4oD4), (C2xC4).261(C22xS3), (C3xC22:C4).109C22, SmallGroup(192,1053)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.41D6
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=f2=c, ab=ba, ac=ca, faf-1=ad=da, ae=ea, bc=cb, ebe-1=bd=db, fbf-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >
Subgroups: 680 in 250 conjugacy classes, 95 normal (31 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C23, Dic3, C12, D6, C2xC6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xQ8, C24, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C2xC12, C22xS3, C22xC6, C22xC6, C22xC6, C2xC22:C4, C4xD4, C22wrC2, C4:D4, C22:Q8, C22.D4, C4.4D4, C42:2C2, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C3xC22:C4, C2xDic6, S3xC2xC4, C2xD12, C2xC3:D4, C22xC12, C23xC6, C22.32C24, C23.8D6, C23.9D6, Dic3:D4, C23.11D6, C12.48D4, C4xC3:D4, C12:7D4, C24:4S3, C6xC22:C4, C24.41D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, 2+ 1+4, C4oD12, S3xC23, C22.32C24, C2xC4oD12, D4:6D6, C24.41D6
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 25)(10 26)(11 27)(12 28)
(2 30)(4 32)(6 34)(8 36)(10 26)(12 28)(13 19)(14 37)(15 21)(16 39)(17 23)(18 41)(20 43)(22 45)(24 47)(38 44)(40 46)(42 48)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 25)(10 26)(11 27)(12 28)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 37)(21 38)(22 39)(23 40)(24 41)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 43 7 37)(2 48 8 42)(3 41 9 47)(4 46 10 40)(5 39 11 45)(6 44 12 38)(13 30 19 36)(14 35 20 29)(15 28 21 34)(16 33 22 27)(17 26 23 32)(18 31 24 25)
G:=sub<Sym(48)| (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28), (2,30)(4,32)(6,34)(8,36)(10,26)(12,28)(13,19)(14,37)(15,21)(16,39)(17,23)(18,41)(20,43)(22,45)(24,47)(38,44)(40,46)(42,48), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,43,7,37)(2,48,8,42)(3,41,9,47)(4,46,10,40)(5,39,11,45)(6,44,12,38)(13,30,19,36)(14,35,20,29)(15,28,21,34)(16,33,22,27)(17,26,23,32)(18,31,24,25)>;
G:=Group( (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28), (2,30)(4,32)(6,34)(8,36)(10,26)(12,28)(13,19)(14,37)(15,21)(16,39)(17,23)(18,41)(20,43)(22,45)(24,47)(38,44)(40,46)(42,48), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,43,7,37)(2,48,8,42)(3,41,9,47)(4,46,10,40)(5,39,11,45)(6,44,12,38)(13,30,19,36)(14,35,20,29)(15,28,21,34)(16,33,22,27)(17,26,23,32)(18,31,24,25) );
G=PermutationGroup([[(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,25),(10,26),(11,27),(12,28)], [(2,30),(4,32),(6,34),(8,36),(10,26),(12,28),(13,19),(14,37),(15,21),(16,39),(17,23),(18,41),(20,43),(22,45),(24,47),(38,44),(40,46),(42,48)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,25),(10,26),(11,27),(12,28),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,37),(21,38),(22,39),(23,40),(24,41)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,43,7,37),(2,48,8,42),(3,41,9,47),(4,46,10,40),(5,39,11,45),(6,44,12,38),(13,30,19,36),(14,35,20,29),(15,28,21,34),(16,33,22,27),(17,26,23,32),(18,31,24,25)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4L | 6A | ··· | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 12 | ··· | 12 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | C4oD4 | C4oD12 | 2+ 1+4 | D4:6D6 |
kernel | C24.41D6 | C23.8D6 | C23.9D6 | Dic3:D4 | C23.11D6 | C12.48D4 | C4xC3:D4 | C12:7D4 | C24:4S3 | C6xC22:C4 | C2xC22:C4 | C22:C4 | C22xC4 | C24 | C2xC6 | C22 | C6 | C2 |
# reps | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 4 | 2 | 1 | 4 | 8 | 2 | 4 |
Matrix representation of C24.41D6 ►in GL6(F13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[7,0,0,0,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,6,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0] >;
C24.41D6 in GAP, Magma, Sage, TeX
C_2^4._{41}D_6
% in TeX
G:=Group("C2^4.41D6");
// GroupNames label
G:=SmallGroup(192,1053);
// by ID
G=gap.SmallGroup(192,1053);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,100,675,297,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=f^2=c,a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,a*e=e*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations